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Abstract

Algebraic structure of Calogero-type models are investigated by using
the exchange-operator formalism. It is shown that the set of the Jack
polynomials whose arguments are Dunkl-type operators provides an or-
thogonal basis.

1 Introduction

Among quantum integrable models in one dimension, Calogero-Sutherland type
models catch renewed interests, because of not only their physical significance,
but also their beautiful mathematical structure. An example of such models is
the Calogero model with harmonic potential[l, 2]:

N 9 _
nelf(f) mis o

The subscript “A” signifies that this Hamiltonian is invariant under the action
of the symmetric group Sy, i.e., the Ay_1-type Weyl group. There also exist
Calogero-type models associated with other types of the Weyl groups. The
By-invariant counterpart of the Hamiltonian (1) is the following[3]:
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We remark that the model associated with the Cn-type Weyl group is equivalent
to the By-case, and Dy-type model is obtained by setting v = 0.
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Ground state wavefunction for (1) is

N

(@) = [ Iz — zel® [ exp(~23/2),

J<k Jj=1

and that for (2) is

N N
P (@) = [T 122 = 2317 ] les1” T exp(=22/2).
7j=1 7j=1

i<k

Wavefunctions for excited states can be constructed in principle by using a
kind of creation and annihilation operators which include coordinate-exchange|[4,
5]. Namely, one can construct the operators with the following commutation
relations:

[HW,ag-W)T] = aS-W)T, [HW,ag-W)] = —ag-W)
for W = A or B. Using these operators, one can easily see that the wavefunc-
tions of the form,

F@™t, L aW MM @) (W= 4o B), (3)

become eigenstates if f(x1,...,zn) are homogeneous polynomials. However
naive choice of the polynomials does not create the orthogonal states with re-
spect to the scalar product,

(f,g9) = /_00 flxe,...,eN)g(z1, ..., oN)de.

One should properly choose the polynomial f(z1,...,zn) of (3).

By using the exchange-operator formalism, we shall show that the proper
choice is the Jack symmetric polynomials for both the Ay_;-case[6] and the
Bpy-case[7].

2 Preliminaries

2.1 Creation and annihilation operators

We first introduce “gauge-transformed” Hamiltonians:

Hy o= (8§") " o Haoof"
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= — —— 4z - — S R
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Hp = (6") " oHpogi?
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where (b(()A) and ¢[()B) are polynomial parts of the ground state wavefunctions:

A
¢)[() )(xl,...,a:N) = H lz; — 217,
<k
N
B
(@1, ay) =[] 12 =23 Il
i<k Jj=1
) . ae) _ N 2
We denote transformed ground state as 1, 7, i.e., ¥y ' = Hj:l exp(—;/2).

We remark that this Jéc) is joint eigenfunction of H, and Hg.
Creation and annihilation operators for these Hamiltonians can be con-
structed in quite similar way as in the case of the harmonic oscillators[3, 5]:

AW = % (- +25), A = % (D" + ;)

for W = A or B. Here we have used so-called “Dunkl operators”[8]:

An_1-type
A 0 1 '
J k(#5) 7
By-type
(B) 9 S
pB - 2 —(1—t¢
; oz, +’Y;$ ( i)
Y T -t
— — Sjk ] —Ujlkojk )
k) ST S

where the operators s;;, and t; act as follows:
sijf(...,:ni,...,:nj,...) :f(...,CC]',...,.’Ei,...),

tjf(...,l’j,...) :f(...,—l’j,...).

Commutation relations for these operators are the following:
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An_i-type

(AP AR = (A, A7) = o,

J
[AEA), AE-A)T] =0 [1+8 Z sit | — (1= dij)Bsij,
k(#1)
SijAE-A” = AEA)TSU, SijAg'A) = AEA)SU’
SijAgcA)T = AgcA)TSij, SijA(kA) = AgcA)Sij (k#l,]),

Byn-type

(B)t A(B)ty _ 14(B) 4(B)y _
AT, AP = (AP, A = o,
(AP AP = 5 (148 > (sik + titksic)
k(1)
— (1= 6ij)B(sij — titrsik)-
SZ]AEB) = AEB)Sij, SijA(kB) = A(kB)Sij (k 7& i:j):
;AP = — APt pa? = APy (k4 )).

J

If we define H w as

N
> (AP AT L AMTA) (W = A or B,

j=1

~ 1
HW:§

then PAIW are related to the gauge-transformed Calogero Hamiltonians:
ﬁ—w = Res (ﬁw) ,

where Res(X) means that action of an operator X is restricted to symmetric
functions of the variables x1,...,zn for Ay_1-case, or to symmetric functions
of the variables z7,...,z% for By-case. Hence, if we consider wavefunctions
with above symmetry, spectrum_of I;TW coincides with that of FAIW. Hereafter
we will consider Hy instead of Hyy .

Although the commutation relations for Ag.W) and Ag.W)T are complicated,

commutation relations with & w are quite simple:

A 4N _ (Wt B AW _ W)
[Fw, AT = At (fy, A = 4,

J

)t

Using the operators A;W , one can construct excited state wavefunctions:
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f (AY‘)T, cee AS\?)T) {/?éc) for the Ay case,
f ((AgB)T)Q, e (AS\?)T)Q) NSC) for the By case,

with f(z,...,zx) symmetric polynomials with homogeneous degree.

2.2 Symmetric and non-symmetric Jack polynomials

First we define “Cherednik operators” lA)g-A) [9, 10]:

ﬁ§A) = :L’ngA) +ﬁ Z S]‘k
k(<3)
(3 Tl
= zja——F ——(s;p — 1)
Oz; o T;—x
z .

-3 (=D +BG - ). (4)

k(>j) "7 k

(4)

Since the operators D ;7 commute each other, they are diagonalized simultane-
ously by suitable choice of bases of Clzy,...,zn] [10, 11]. Such basis is called
non-symmetric Jack polynomials. An non-symmetric Jack polynomial E}(z),
labeled with the partition A = (A1, ..., An) and the element w € Sy, is charac-
terized by the following properties[10, 11]:

L Eyw)=a)+ > Ch

ww’

(1w') <(A,w)

”w
:I;'UJI 9

)

2. E)(x) is joint eigenfunctions for the operators ﬁ§A ,

where we have used the notation z) = mf‘ul(l) . -a:Z‘J’E’N). To define the ordering

(u,w") < (A, w), we use the dominance ordering <, for partitions[12], and the
Bruhat ordering < for the elements of Sy. Using these, we define the ordering
as follows:

, (1) n<oA
(w') <Aw) { (ii) if g = A then w' <z w.

We denote the eigenvalues of ﬁ](.A) as € (A, w):
DYWEN(2) = ¢;(\, w)E2) ().

The eigenvalues €;(\, w) are all obtained by permutating the components of the
multiplet {>\N—j+1 +8( - 1)}j:1,...,N‘
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)

Using the operator ﬁg-A , we introduce generating function of symmetric

commuting operators[l()]:
N (A ] [ (A

(4)
J
symmetrizing E) (z), which are nothing but the Jack symmetric polynomials

Jx(z). Eigenvalues of ﬁéA) (u) are then given by

Since ﬁéA) (u) is symmetric in D , symmetric eigenfunctions are obtained by

N
A @) (@) = [T Hu+ Av—jin + 86 = D} (@), )

Jj=1

We note that all the eigenvalues of ﬁéA) (u) are distinct for generic values of w.

3 Construction of orthogonal bases

3.1 Ay _;-type model

We denote the algebra generated by the elements x;, D§.A) and s;; as AéA). We
then introduce an AéA)—module }'S(A) ( “Fock space”) generated by the vacuum

vector wés) = 1. The elements D'V of AéA) annihilate the vacuum vector, and

() ’

s;j preserve ¢, , i.e.,
) ~(s ~(s ~(s
DJ(. )1/15 ) =0, sing ) = 1/15 )

We denote an algebra generated by AE-A), AE.A)T and s;; as AEA). Since the
)

commutation relations of these operators are the same as those of z; and D§A ,

we can introduce an isomorphism of AéA) to AEZA) as follows:
A A A
plaj) =AY, p(DY) = AN,

We then extend p to the isomorphism of Fock spaces. Fock space for AEA) is

constructed in the same way as AéA); Fock space }'éA) is defined as féA) =

clat ,AS\?)T]JSC) where the vacuum vector JSC) = vazl exp(—x3/2) is
annihilated by Ag.A), ie., Ag.A)z];VSC) = 0. We denote also by p the isomorphism
of ]-'S(A) to }'éA) such that

N
o) = 3 = TLexnl-a2/2)
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o) = p@dd e ca™t,..., AP

for a € C[zy,...,zN].
Since the operators Dg-A)

7(A)

operators h;

commute each other, we can construct commuting

acting on féA) as

(= p(DFY) = ATAY £ 8 3 s
k(<j)

=)
~

Generating function of symmetric commuting operators that include H, is con-
structed by using h( ).

N

T +r{).

i=1

>)
S
~—~
I~
N’
Il
X
VS
>)
S
~—~
I~
N’
N——"
Il

Applying p to (5), we have the following eigenvalue equation for K(CA) (u):

S (4 A D

L J+1+ﬁ(J—1)}J( AP A 3.

j=1
Since all the eigenvalues of K(CA) (u) are distinct and the operator lAL;A) is
self-adjoint with respect to the scalar product,

o= [ T oy an)g(o, o) (04D)2de,

we now know that the wavefunctions J,\(A(A)T)zb( °) form an orthogonal basis
for the Ax_; case.
3.2 Bpy-type model

Using the By-type Dunkl operators, we can define another set of commuting
operator D( ).

E§B) _ ZngB) +8 Z (8j1 + titesir)
k(<j)
2k
_ 2) — 1—ttes;
+ﬂ Z { — 5jk) 2 +Zk( J kSJk)}
k(<j)

+ﬁ2{

Z3 .
1—Sjk)+ . (1—tjtk8jk)} +26(j — 1),
k(>7)

Zj— Zj + 2
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where we have replaced the variables z; with z; for the latter convenience. If we
restrict the action of D](.B) to the functions with the symmetry t;f(2) = f(z),

then ﬁ](.B) is reduced to

~ o 22
Res (D)) = %5 +268 Y (L= s)
(<) T 5k
+23 Z L (1= sjx) +28(j — 1). (6)
k(>3) J

Comparing (6) with (4), we find that Res'") (ﬁ](.B)) is equivalent to 2ﬁ§A) if we
make a change of the variables z; = 7 /2.

Defining the operator ﬁéB) (u) as

N
AP (u) = TJ(w + DI,

AP @)y (33/2,.., 7% /2)
N
[T{u+22n 51 +28G - D} I (21/2, .., 2%/2). (7)

Jj=1

We call the algebra generated by the elements z;, D](.B), s;; and t; as AéB)

B), AE.B)T, s;; and t; as A(CB). Since the com-
mutation relations of these operators are the same as those of z; and DJ(-B), we

and the algebra generated by Ag.

can define an isomorphism o of AéB) to A(CB) as follows:

o(z) = AP (D) = 4B,

)

We then introduce Fock spaces for AéB) and A(CB):

7B = (c[g;%,...,m?v]Ngs),
FP = e, (a5,

The elements D§-B) of AéB) annihilate Jés), while Ag-B)T annihilate Jéc). Hence
the isomorpism o can be extended to the isomorphism of the Fock spaces:

@) =39, @) = o(@dl®

- 78 -



for a € Clz3,..., 2%
Applying this isomorphism to (7), we have the following eigenvalue equation
AA) N,

for A¢ (u):

REP Gy (A2, (A2 /2) 3
N
=TTt 20w +28G -0} 2 (AP /2, (A8 /2) 3.

Jj=1

Since all the eigenvalues of 3&3) (u) are distinct and the operator }\LS-B) is
self-adjoint with respect to the scalar product,

(f)g)EIB) = /_oo f(:rl,...,a:N)g(arl,...,a:N)(¢[()B))2da:,

we conclude that the wavefunctions Jy ((AF))2/2) JSC) form an orthogonal
basis for the By case.

4 Concluding remarks

We have constructed an orthogonal basis for the Calogero-type models by using
the Jack polynomials whose arguments are Dunkl-type operators:

An_1-type model: {JA (AgA)T, N AS\}L‘)T) Jéc)} (()A),

By-type models {1y (4272, (412/2) 57 | o).

In both cases, wavefunctions are of the form,
(symmetric polynomials) x (ground state wavefunction).

The polynomial parts may be regarded as a multi-variable generalization of
classical orthogonal polynomials[13, 14]. In case of the Ax_;-type model, they
are a multi-variable generalization of the Hermite polynomials while they are a
multi-variable generalization of the Laguerre polynomials in the By case.

It should be noted that the norms of these orthogonal wavefunctions have
been calculated via some limiting procedure[13, 14]. However dynamical corre-
lation functions have not been calculated so far, due to the lack of some formulas
needed. We hope that our results provide a useful tool for deeper understanding
of the Calogero-type models.
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